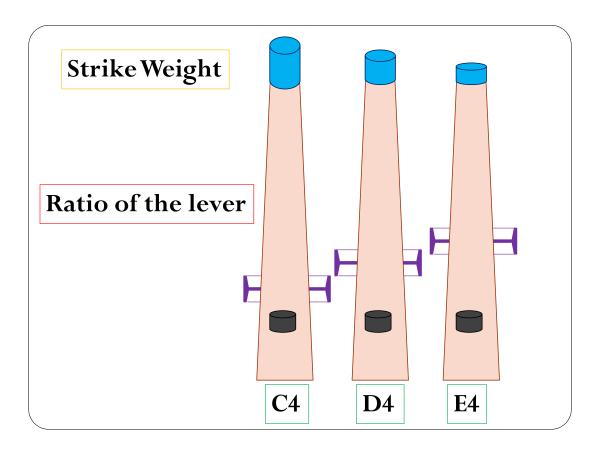
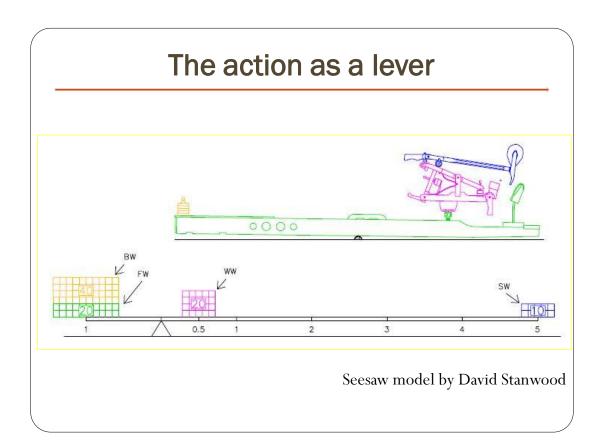
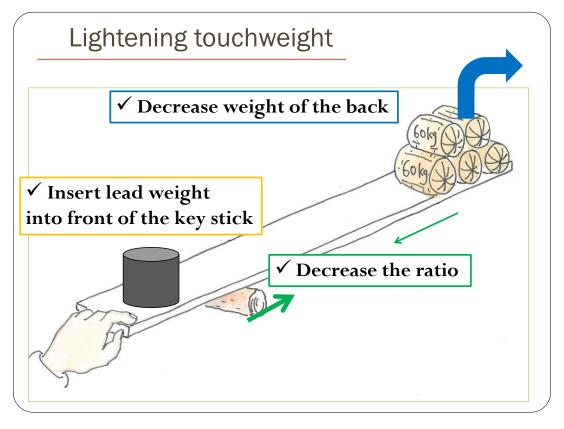
Grand Action Set Up


Contents of Class


- ❖ Basic Measurement & Geometry
- Touchweight related ratios and weights
- Some sample procedures



- **C4** is set up **heavier**
- **&** E4 is set up **lighter**

That relates Ratios & Weights

Basics, Ratios & Weights

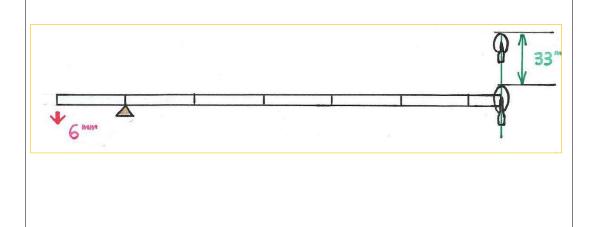
- 1. Basic measurement
- 2. Action ratio, view from regulation
- 3. Strike ratio, view from static touchweight
- **4. Gear ratios** and linked Moment of Inertia, view from kinetic touchweight
- 5. Strike Weight, majority of the touchweight
- 6. Front Weight, locating key leads

1, Basic measurement

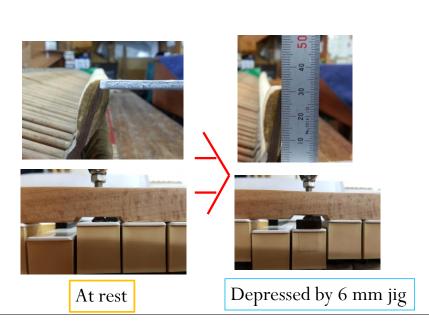
***** Spread Distance

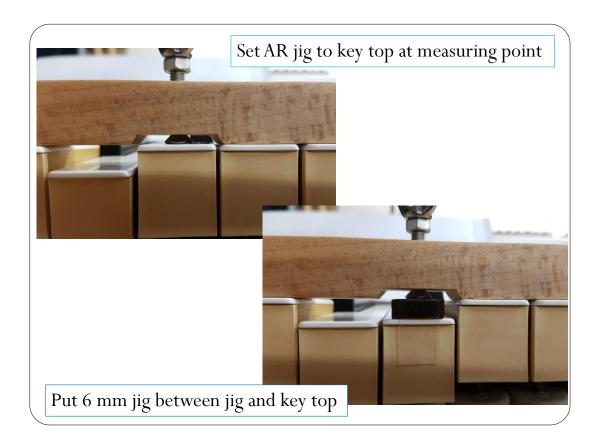
❖ Magic line

Key – Whippen connection


Check when capstan crosses connecting point

Center pin height


2, Action Ratio, view from travel distance


$$AR = 33 / 6 = 5.5$$

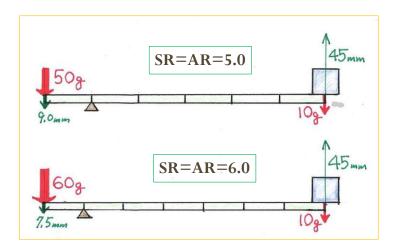
Measure how much hammer travels by 6 mm dip

Hammer travel distance / 6 = AR

Calculate key depth

Key dip = (hammer blow - let off) / AR + aftertouch

(Example) Key dip = (47 mm - 2 mm) / 5.5 + 1.5 mm= 45/5.5 + 1.5 = 9.7 mm


*at measuring point i.e. 13 mm from front edge

Action Ratio	Key depth at front edge
5.2	10.5
5.4	10.2
5.6	9.9
5.8	9.6
6.0	9.3
6.2	9.1

Figures at: hammer blow 46 mm, let off 2 mm, aftertouch 1.5 mm Key length (front side) 200 mm

3, Strike Ratio, view from Weight

Weight ratio between key front and hammer

The weight needed at key front when balanced 1 g of hammer

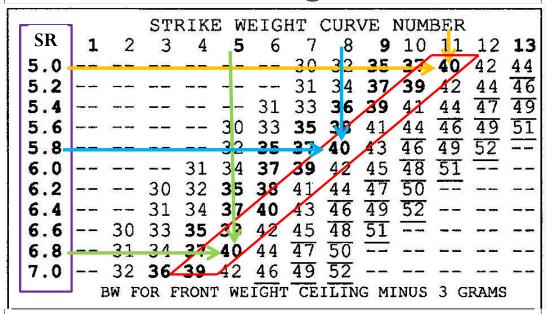
Take measurement

 $SR = ((FW + BW) - (WW \times KR)) / SW$

Calculate BW by measuring DW & UW

1, Measure DW & UW

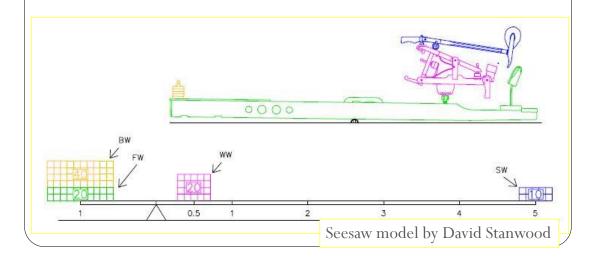
2, Calculate : $\mathbf{BW} = (DW + UW) / 2$


Measure SR by 2 g weight

SR = (BW with 2 g - BW without 2 g) / 2

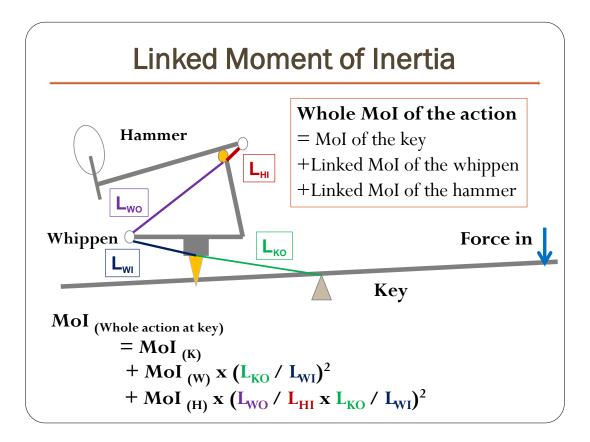
Put 2 g weight inline with hammer center line

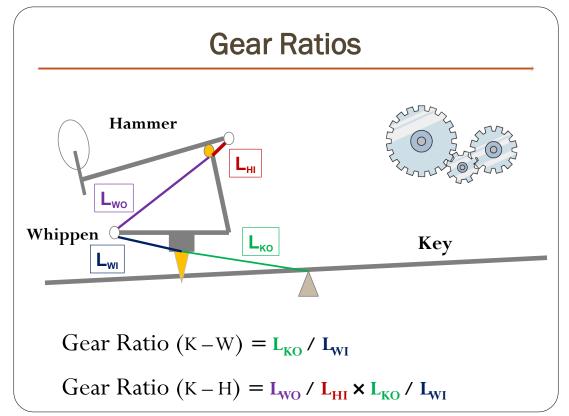
Workable range of SR

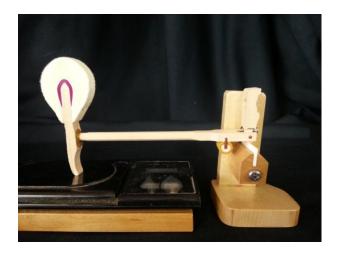


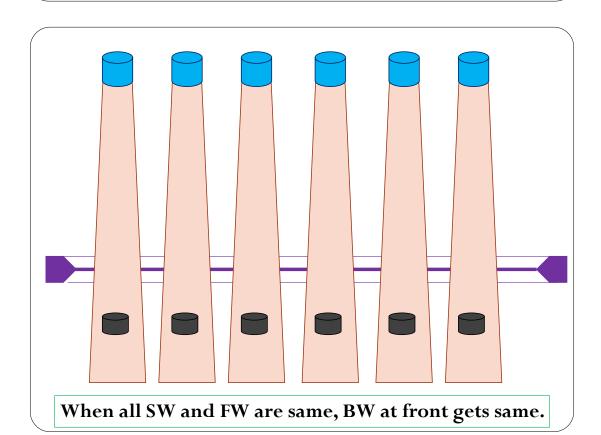
Parameter table by David Stanwood

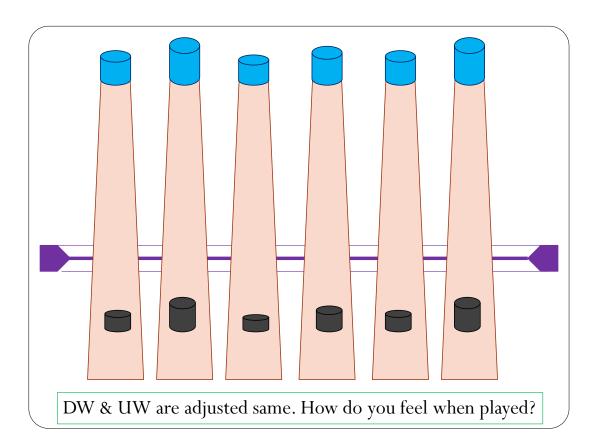
4, Gear Ratio and Moment of Inertia

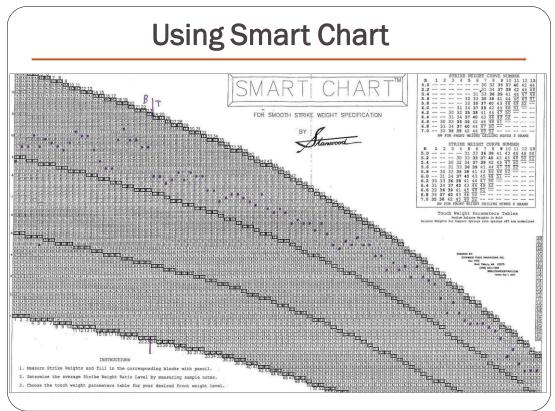

Torque = Moment of Inertia x Angular acceleration


Strike force to the key = MoI x Angular Acceleration of the key

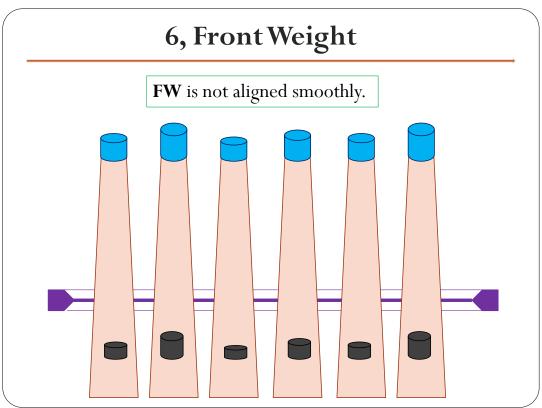

Each part has own Mol

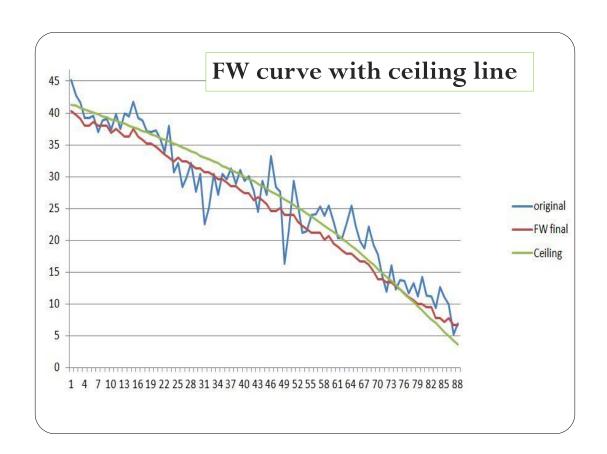


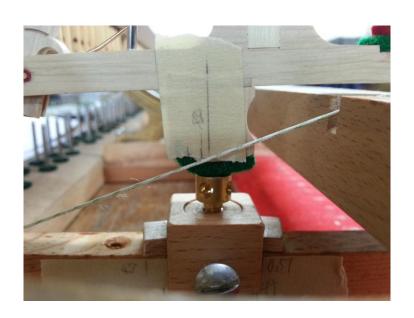



5, Strike Weight




More than 80% of touchweight is coming from hammer

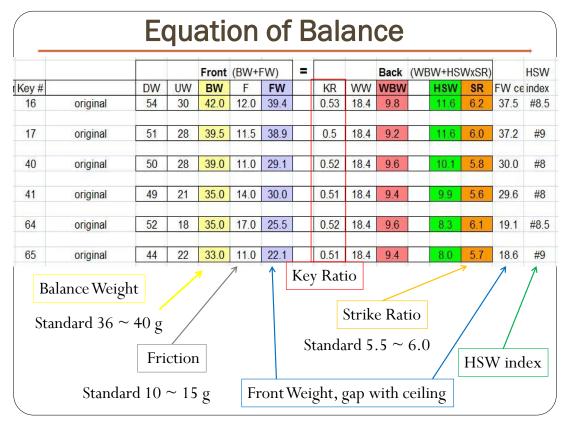


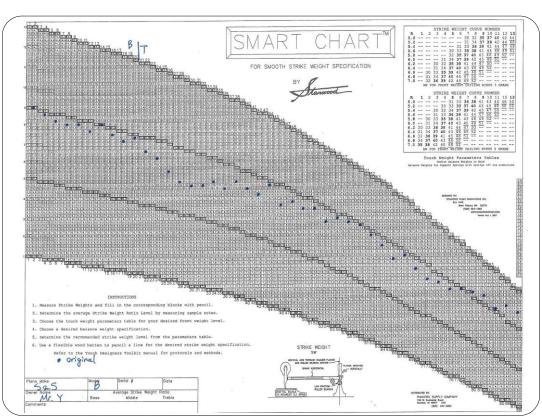


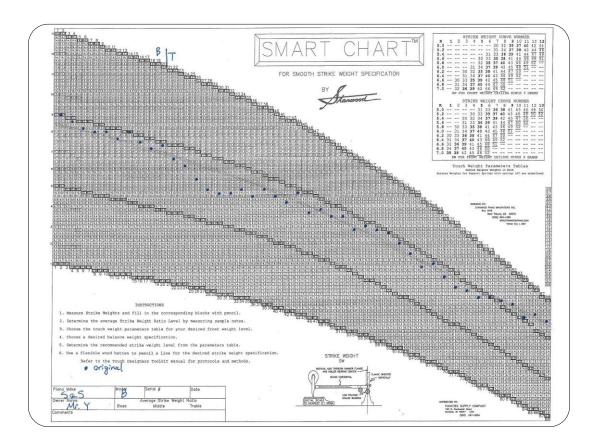
6, Set up the action, Procedure

Sample 1: only existing parts

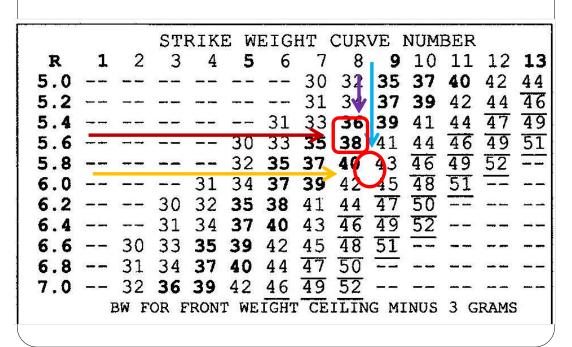
S&S B # 50****


Someone put new hammers and shanks not so long ago.


The customer wanted to;

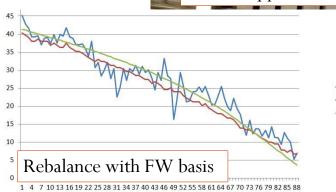

- make lighter slightly
- have smoother touch through all registers
- better response
- * It was difficult to play pp when playing lightly in tenor and bass area

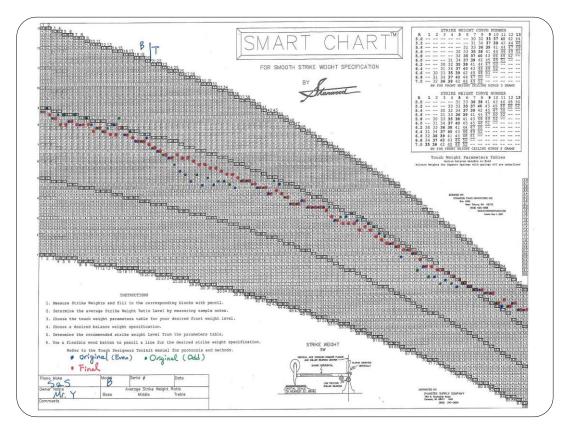
Observation

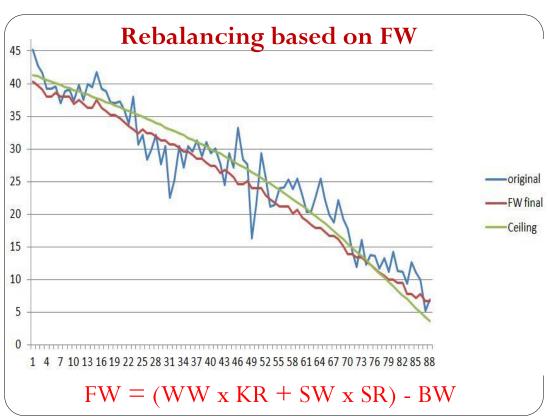

- ➤ Damper timing is too early
- ➤ Split wedge felts are too long in tenor section
- ➤ Action centers are tight
- The spread distance is shorter in tenor to bass
- ➤ Balance weight index is standard to a bit higher
- Key ratio is vary due to uneven positioning of capstans

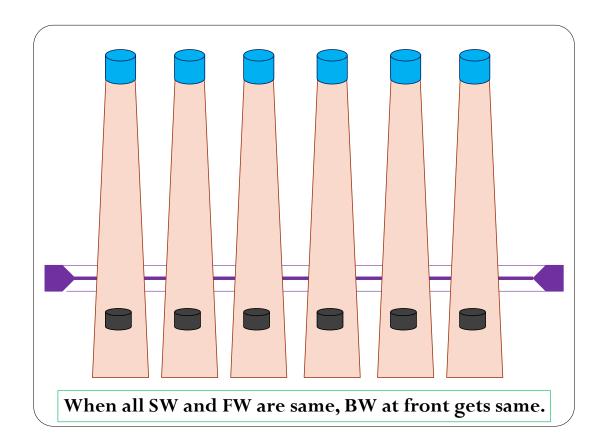
Check parameter table

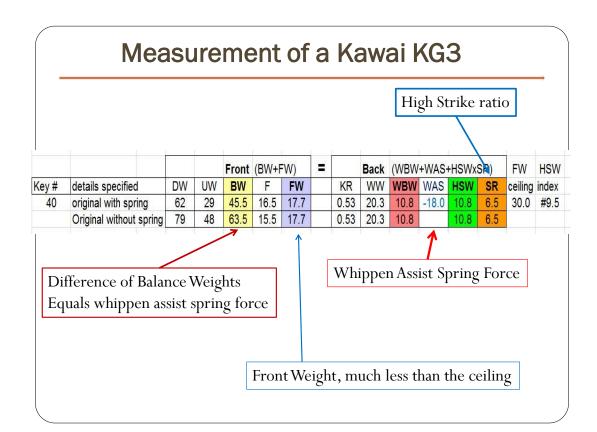
Simulate by equation of balance

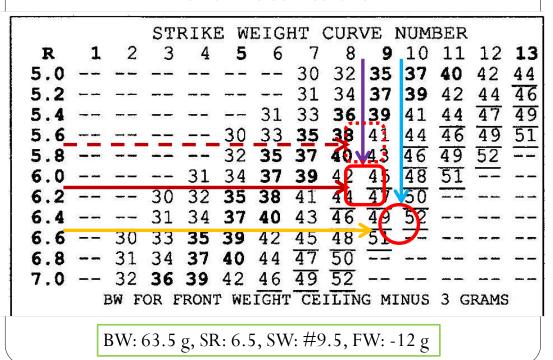

Orig	inal + trial			Front	(BW+I	FW)	-			Back	(WBW+HS	WxSR)		HSV
Key#		DW	UW	BW	F	FW		KR	WW	WBW	HSW	SR	FW ce	inde
16	original	54	30	42.0	12.0	39.4	.0	0.53	18.4	9.8	11.6	6.2	37.5	#8.
	shim whippen heel	49	25	37.0	12.0	39.4		0.53	18.4	9.8	11.6	5.7		
	re-balance	52	28	40.0	12.0	36.4	8	0.53	18.4	9.8	11.6	5.7		
17	original	51	28	39.5	11.5	38.9		0.5	18.4	9.2	11.6	6.0	37.2	#9
	shim whippen heel	46	23	34.5	11.5	38.9		0.5	18.4	9.2	11.6	5.5		
	re-balance	51	28	39.5	11.5	33.9	28	0.5	18.4	9.2	11.6	5.5		


Actual work


- ➤ Re-center flanges
- ➤ Correct spread distance
- ➤ Trim split wedge felts
- ➤ Adjust damper timing etc







Sample 2: whippen assist spring

Parameter table

Plan 1

Rebalancing only

				Front	(BW+F	W)	=		Back	(WBW	+WAS	+HSWx	SR)	FW	HSW
#	details specified	DW	UW	BW	F	FW		KR	WW	WBW	WAS	HSW	SR	ceiling	index
an 1	original with spring	62	29	45.5	16.5	17.7		0.53	20.3	10.8	-18.0	10.8	6.5	30.0	#9.5
	Original without spring	79	48	63.5	15.5	17.7		0.53	20.3	10.8		10.8	6.5		
	Key balancing	55	24	39.5	15.5	41.7		0.53	20.3	10.8		10.8	6.5		

FW gets more than 10 grams heavier than the ceiling

Plan 2

Reduce SW and SR then key balancing

				Front	(BW+F	W)	=		Back	(WBW	+WAS-	+HSWx	SR)	FW	HSW
	details specified	DW	UW	BW	F	FW		KR	WW	WBW	WAS	HSW	SR	ceiling	index
2	original with spring	62	29	45.5	16.5	17.7		0.53	20.3	10.8	-18.0	10.8	6.5	30.0	#9.5
	Original without spring	79	48	63.5	15.5	17.7		0.53	20.3	10.8		10.8	6.5		
	SW adjustment	76	45	60.5	15.5	17.7		0.53	20.3	10.8	1	10.4	6.5		#8.5
	Half cut punching	72	41	56.5	15.5	17.7		0.53	20.3	10.8		10.4	6.1		
	Shim capstan	68	37	52.5	15.5	17.7		0.53	20.3	10.8		10.4	5.7		
	Key balancing	55	24	39.5	15.5	30.7		0.53	20.3	10.8		10.4	5.7		
	1000	77				-	111								

FW is about the ceiling

Strike ratio gets standard

Plan 3

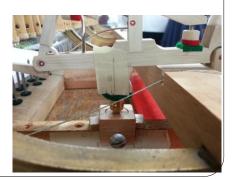

Reduce SW, SR and WAS then key balancing

				Front	(BW+F	FW)	=		Back	(WBW	+WAS	+HSWx	SR)	FW	HSW
#	details specified	DW	UW	BW	F	FW		KR	WW	WBW	WAS	HSW	SR	ceiling	index
13	original with spring	62	29	45.5	16.5	17.7		0.53	20.3	10.8	-18.0	10.8	6.5	30.0	#9.5
	Original without spring	79	48	63.5	15.5	17.7		0.53	20.3	10.8	8	10.8	6.5		
	SW adjustment	76	45	60.5	15.5	17.7		0.53	20.3	10.8		10.4	6.5		#8.5
	Half cut punching	72	41	56.5	15.5	17.7		0.53	20.3	10.8		10.4	6.1		
	Weaken asist spring	64	33	48.5	15.5	17.7		0.53	20.3	10.8	-8.0	10.4	6.1		
	Key balancing	55	24	39.5	15.5	26.7		0.53	20.3	10.8	-8.0	10.4	6.1	l l	

Reduced whippen Assist spring force

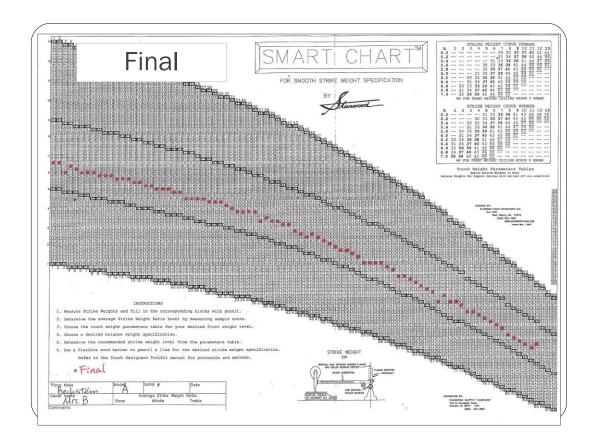
Front Weight, 3 grams minus the ceiling

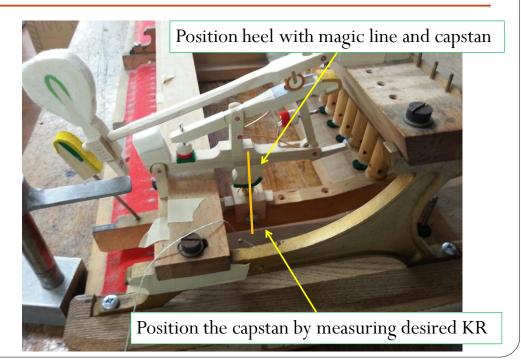
Sample 3: with new parts


Change parameters

- ***** Friction
- **Geometry**
- **\$** SW, SR, WW, KR and BW
- **❖** Moment of Inertia and Gear ratio

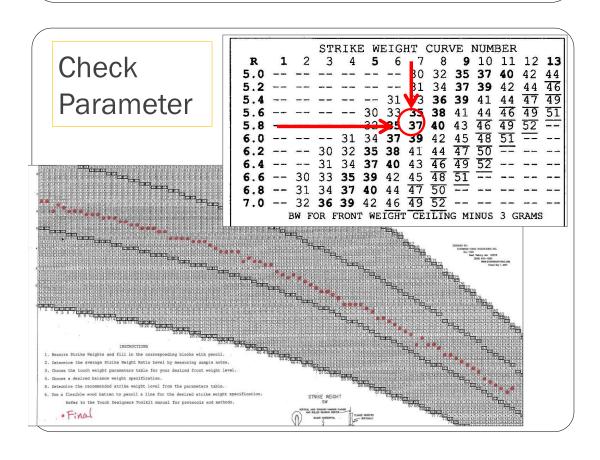
Find desired geometry


- ❖ Install new shank and a hammer which has similar SW of new hammer (or actual one)
- ❖ Install whippen with temporary fixed heel
- ❖Set temporary capstan to original position
- ❖ Check regulation with AR


Adjust SW of new set of hammers

- 1. Weight raw hammer heads
- 2. Calculate SW or measure it with dummy shank
- 3. Pre-taper heavier ones
- 4. Measure SW after gluing shanks and chopped excess
- 5. Tail and taper hammer to get desired SW
- 6. Bore and add hammer lead if necessary

Purple: SW with dummy shall be a second of the first second of the secon


Position capstan and whippen heel

Check equation of balance

				Front	(BW+I	FW)	=			Back	(WBW	+HSW	xSR)		HSW
Key	# details specified	DW	UW	BW	F	FW		KR	WW	WBW		HSW	SR	FW ce	index
16	original	63	21	42.0	21.0	29.8		0.54	19.3	10.4		10.2	6.0	37.5	#6
	new hammer, shank & whippen, cut punching	65	33	49.0	16.0	20.2		0.52	16.6	8.6		10.5	5.8		#6.5
	rebalance	56	24	40.0	16.0	29.2		0.52	16.6	8.6		10.5	5.8		
17	original	56	13	34.5	21.5	36.0		0.52	19.3	10.0		9.7	6.2	37.2	#5
	new hammer, shank & whippen, cut punching	57	27	42.0	15.0	26.5		0.52	16.6	8.6		10.4	5.8		#6.5
	rebalance	55	25	40.0	15.0	28.5		0.52	16.6	8.6		10.4	5.8		
40	original	72	22	47.0	25.0	23.2		0.53	19.2	10.18		9.0	6.67	30	#6
	new hammer, shank & whippen, cut punching	61	33	47.0	14.0	13.5		0.52	16.6	8.63		9.3	5.58		#6.5
	rebalance	54	26	40.0	14.0	20.5		0.52	16.6	8.63		9.3	5.58		
41	original	64	22	43.0	21.0	25.0		0.52	19.2	9.98		8.8	6.59	29.6	#5.5
	new hammer, shank & whippen, cut punching	60	29	44.5	15.5	15.6		0.52	16.6	8.63		9.2	5.59		#6.5
	rebalance	56	25	40.5	15.5	19.6		0.52	16.6	8.63		9.2	5.59		

Original, Actual test and proposed rebalance

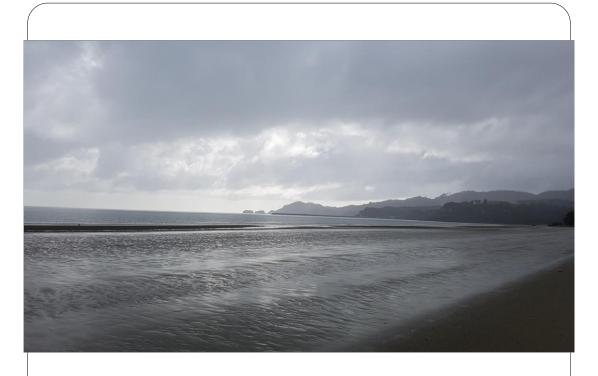
Calculate Mol of the keys

❖ 目標

	3	B0	measured of	original FW		29.8											
a	3	B0	calculated of	original FW		34.9	front	55.1	back	20.2	differe	nce	-5.1				
b			least inertia wi	ith new FW		32.7	front	53.0	back	20.2	aiming	FW	32.7				
С		econo	mical setting wi	ith new FW		32.7	front	52.9	back	20.2	aiming	FW	32.7				
d						32.7	front	52.9	back	20.2	aiming	FW	32.7				
	Yuji	's M	oment of i	nertia f	or ke	y cal	culatir	ng ch	art		Los	d /fra	n+\				
	Yuji	's M	oment of i	nertia f	or ke	y cal	culatir	ng ch	art		Lea	d (fro	ont)				
	Yuji Key #	Note	oment of i	Whole Inertia	FW point distn	Center of torque	COG position	distan ce #5 (mm)	mass of lead	distan ce #4 (mm)		distan ce #3 (mm)	mass of lead	distan ce #2 (mm)	mass of lead	distan ce #1 (mm)	mas of lead
a	Key		200	Whole	FW point	Center of	COG	distan ce #5	mass of	ce #4	mass of	distan ce #3	mass of	ce #2	of	ce #1	of
_	Key #	Note	Status	Whole Inertia	FW point distn	Center of torque	COG position	distan ce #5 (mm)	mass of lead	ce #4 (mm)	mass of lead	distan ce #3 (mm)	mass of lead	ce #2	of	ce #1	of lea
a b c	Key #	Note	Status Original	Whole Inertia 38816	FW point distn	Center of torque	COG position 0.676	distan ce #5 (mm)	mass of lead	ce #4 (mm) 176	mass of lead	distan ce #3 (mm)	mass of lead	ce #2 (mm)	of lead	ce #1 (mm)	of

Positioning of the key leads

- Needs more key leads when locating near to balance pin
- More MoI when locates key leads to farer than pin
- Watch CoG to even MoI


								Lea	ad (fro	nt)				
Status	Whole Inertia	FW point distn	Center of torque	COG position	distan ce #5 (mm)	mass of lead	distan ce #4 (mm)	mass of lead	distan ce #3 (mm)	mass of lead	distan ce #2 (mm)	mass of lead	distan ce #1 (mm)	mass of lead
Original	38816	247	175.7	0.676	198	11.2	176	11.2	153	11.2				
least inertia	33417	247	85.2	0.328			135	6.0	110	19	80	19	50	19.0
economical	36057	247	135.8	0.522		ř	176	11.2	153	11.2	98	17		

7% reduction

Check how Mol is set

	How r	noment	of inert	ia char	nges		
		Hammer	H at key	Whip	W at key	Key	Whole action
Expecting Moi after modification		1,825	152,190	756	3,263	36,057	191,511
% deducted from original		4%		0%		7%	8%
Existing Moi (gcm^2)		1,893	164,973	756	3,411	38,816	207,199
HSW (g)	original	11.2	g				1
	new	10.8	g				
Hammer distance (cm)	original	13	cm				
distance between balance hole co	enter and	center at th	e top of cap	stan screv	V		
	13.7	cm	13.4	cm			
distance between center at the to	p of capst	an screw a	nd whippen	center			
	6.45	cm	6.15				
distance between whippen center	and 1mm	forward fro	om back side	e of the jac	ck at top of j	ack	
	9.45	cm					/
distance between shank flange co	enter and	connecting	point at rolle	er leather v	vith jack		/
	2.15	cm					

8% of MoI reduction is expectable

Golden Bay, South island, New Zealand