Down loadable TWM related files, visit my website: https://www.ynpianotuning.com/downloadable-files

You tube channel, starts August 2019:
https://www.youtube.com/watch?v=QB5FiefumqU
Please subscribe if you like more.

Understanding inertial effect in grand action

Yuji Nakamura, ARPT, New Zealand

Traditional "Touch Weight"

 is indicated by combination of Down weight and Up weight$$
\text { Example: DW = } 52 \text { g \& UW = } 26 \text { g }
$$

Dynamic Touchweight

Touch weight felt while playing
"Measurement of DW \& UW
doesn't stand actual playing as they were measured by movement at less than pp playing"

Approach to inertial effect in the piano action

by Darren Fandrich \& John Rhodes

Current Capstan to Balance Pin Measurement

11.4	A49 Strike Weight
2.0	Letoff
48	Blow Distance
9.6	Minimum Dip
10	Optimal Dip
10.6	Maximum Dip
5.92	Action Ratio *
388	Inertial Touch Factor
Light	Easy Medium Firm Heavy
200	300

Approach to adjust inertial effect in the piano action
"Touch Weight Management"
> Manage two indexes together;

- static "Balance Weight" and
- kinetic resistance "Moment of Inertia"
> Understand theory to manage touchweight

Components of Touch Weight

> Balance weight
> Friction weight > Additional torque
(= Moment of Inertia x angular acceleration)

Balance Weight

Action balances with certain weight

Balance Weight
40 grams

Down Weight

Balance Weight (40g) + Friction (10g)

Strike string lightly

BW (40g) + F (10g) + Additional torque (20g)

Strike string strongly

BW (40g) + F (10g) + More Additional torque (150g)

Example of heavy touch (1)

1, Heavy BW , Normal Friction, Normal Mol $B W=60 \mathrm{~g}(\mathrm{DW} 70 \mathrm{~g}$ \& UW 50 g$), \mathrm{F}=10 \mathrm{~g}$

At BW $(40 \mathrm{~g}) \& F(10 \mathrm{~g})$: Move moderately with 20 g of additional torque

At BW(60g) \& F (10g): Move slowly as if Down Weight measurement

Example of heavy touch (2)

2, Moderate BW , Big Friction , Normal Mol $B W=40 \mathrm{~g}$ (DW $70 \mathrm{~g} \& \mathrm{UW} 10 \mathrm{~g}, \mathrm{~F}=30 \mathrm{~g}$

At BW $(40 \mathrm{~g}) \& F(10 \mathrm{~g})$: Move moderately with $\mathbf{2 0 g}$ of additional torque

At BW $(40 \mathrm{~g}) \& F(30 \mathrm{~g}):$ Move slowly as if Down Weight measurement

Example of heavy touch (3)

3, Moderate BW , Normal Friction , Big Mol $\mathrm{BW}=40 \mathrm{~g}($ DW 50 g \& UW 30 g$), \mathrm{F}=10 \mathrm{~g}$

You may observe fat $\&$ wide hammers and lots of key leads in this case

At BW $(40 \mathrm{~g}) \& F(10 \mathrm{~g}):$ Move moderately with $\mathbf{2 0 g}$ of additional torque

At $\mathrm{BW}(40 \mathrm{~g}) \& F(10 \mathrm{~g})$: Move slowly with 20 g of additional torque

What is "Balance Weight"

$B W+F W=W W \times K R+H S W x S R$

$B W=(D W+U W) / 2$
Seesaw model by David Stanwood

Static touchweight: Balance Weight

Causes of Friction

> Flange centers
$>$ Key bushing (balance \& front)
> Key balance hole
$>$ Capstan - heel connection
$>$ knuckle - jack connection

Kinetic Touch Weight

Same BW doesn't mean they feel same "touch weight"

Kinetic Touch Weight

Torque $=$ Moment of Inertia \times angular acceleration

How to calculate Mol

A part of the $\mathrm{Mol}=\underline{\mathrm{m} \ell^{2}}$

Squared distance between the pivot point and mass center of the part
m: Mass of a part

Mol of keys

Smaller Mol

Compare two keys with same length

More mass in the key
Bigger Mol

Calculating Mol of key model

$\mathrm{Mol}_{\text {(keys } 2}=\mathrm{m}_{1}\left(\mathrm{~s}_{1}\right)^{2}+\mathrm{m}_{2}\left(\mathrm{~s}_{2}\right)^{2}+\mathrm{m}_{3}\left(\mathrm{~s}_{3}\right)^{2}+\mathrm{m}_{\mathrm{L}}\left(\mathrm{s}_{\mathrm{L}}\right)^{2}+\mathrm{m}_{4}\left(\mathrm{~s}_{4}\right)^{2}+\mathrm{m}_{5}\left(s_{5}\right)^{2}+$ $\mathrm{m}_{6}\left(\mathrm{~S}_{6}\right)^{2}+\mathrm{m}_{\mathrm{c}}\left(\mathrm{s}_{\mathrm{c}}\right)^{2}$

Examples: A0 of a Steinway D: 72,000 gcm ${ }^{2}$,
C4 of a Yamaha C3: 31,000 gcm ${ }^{2}$,
C4 of a Kawai K3: 6,000 gcm ${ }^{2}$

Mol of a hammer

$\operatorname{Mol}(\mathrm{H})=\mathrm{SW} \times \mathrm{L}(\mathrm{SW})^{2}$

Mol of a wippen

$\operatorname{Mol}(\mathrm{w})=\sum\left\{\right.$ Mass of each part $\left.\times \mathrm{L}(\text { each })^{2}\right\}$

Moment of Inertia

> Kinetic resistance of a rotating object

Linked Moment of Inertia

> Amount of the Moment of Inertia
transferred through linked parts

Gear Ratios

> Output/input ratio of linked rotating parts

Piano action, Linked 3 rotating parts

How to feel the Mol of hammer at key

$\operatorname{Mol}_{\left(\mathrm{H}_{\text {at Key })}\right.}=\operatorname{MoI}_{(\mathrm{H})} \times\left(\mathrm{L}_{\mathrm{WO}} / \mathrm{L}_{\mathrm{HI}} \times \mathrm{L}_{\mathrm{KO}} / \mathrm{L}_{\mathrm{WI}}\right)^{2}$

Linked Moment of Inertia

Mol
(Whole action at key)

$$
\begin{aligned}
& \left.=\operatorname{Mol}_{(K)}^{(}\right) \\
& +\operatorname{Mol}_{(\mathrm{W})} \times\left(L_{\mathrm{KO}} / L_{\mathrm{WI}}\right)^{2} \\
& +\operatorname{Mol}_{(H)} \times\left(L_{\mathrm{WO}} / L_{\mathrm{HI}} \times L_{\mathrm{KO}} / L_{\mathrm{WI}}\right)^{2}
\end{aligned}
$$

Smaller Gear Ratio = Lighter to give acceleration

Bigger Gear Ratio $=$ Heavier to give acceleration

Big piano or Small piano?

Gear ratio (wippen - key) $\longrightarrow\left(L_{k O} / L_{\text {WI }}\right)^{2}$

Difference in $L_{(k 0)}$

Sample calculation:

- Same hammer, wippen and Mol (key)
- Use each data of $L_{(K)}$

S\&S model M Bottom B (Lko = 12.1 cm)
 $>$ Mol ${ }_{\text {(whole) }}$: 202,000 g cm ${ }^{\text {² }}$

S\&S model D Bottom B (Lко $=16.5 \mathrm{~cm})$
$>\mathrm{Mol}_{\text {(whole) })}: 316,000 \mathrm{~g} \mathrm{~cm}^{\wedge}$ 2

S\&S M: Lkı = 23.2 cm, Lko $=12.1$ cm, Mol = 202,000

S\&S D: Lkı = 31 cm, Lко $=16.5 \mathrm{~cm}, \mathrm{Mol}=316,000$

Smaller Mol = Easier to give acceleration = Top speed is low

Kids: enjoy to ride
Professional: too light to ride, top speed is far slow

Relation between playing force and Mol

Play at lighter action with smaller Mol

The pianist who has narrow band of playing force:

Feels controllable and expressive

The pianist who has wider band of playing force:

Feels limited volume and expression

Bigger Mol = Heavier to give acceleration = Top speed is very fast

Kids: nearly impossible to ride as too heavy Professional: manage-able, fastest top speed

Relation between playing force and Mol

Play at heavier action with bigger Mol

The pianist who has narrow band of playing force:

Feels too heavy

The pianist who has wider band of playing force:

Feels controllable and expressive

Where can we adjust?

>Strike Weight - Ratios

$>$ Location of key leads

Decide Strike Weight level

> Lighter hammer has better tremolo ability
> Heavier hammer has deeper and bigger tone
\longrightarrow Find desired SW with

- Preferred Strike Ratio
- Desired touchweight
- Tonal quality

Set Ratios

> Action Ratio for standard regulation

> Strike Ratio for reasonable static touchweight
> Gear ratios are related with AR \& SR

Adjusted by

- Capstan position,
- Cut balance punching cloth,
- Shim wippen heel etc.

Location of key leads

Locate key leads according to the amount of Mol

Get bigger Mol

- Locate leads outer side

Get smaller Mol

- Locate leads closer to balance pin

Same DW \& UW, the Mol is not same

Stanwood Adjustable Leverage Action

Adjustable wippen heel

