Down loadable TWM related files, visit my website:

https://www.ynpianotuning.com/downloadable-files

You tube channel, starts August 2019:

https://www.youtube.com/watch?v=QB5FiefumqU

Please subscribe if you like more.

Understanding inertial effect in grand action

Yuji Nakamura, ARPT, New Zealand

Traditional "Touch Weight"

is indicated by combination of Down weight and Up weight

Example: DW = 52 g & UW = 26 g

Dynamic Touchweight

Touch weight felt while playing

"Measurement of DW & UW doesn't stand actual playing as they were measured by movement at less than pp playing"

Approach to inertial effect in the piano action by Darren Fandrich & John Rhodes

Approach to adjust inertial effect in the piano action

"Touch Weight Management"

Manage two indexes together;

- static "Balance Weight" and
- kinetic resistance "Moment of Inertia"

Understand theory to manage touchweight

Components of Touch Weight

Balance weight
 Friction weight
 Additional torque

 (= Moment of Inertia x angular acceleration)

Action balances with certain weight

Strike string lightly

BW (40g) + F (10g) + Additional torque (20g)

Strike string strongly

BW (40g) + F (10g) + More Additional torque (150g)

Example of heavy touch (1)

1, Heavy BW, Normal Friction, Normal Mol BW = 60 g (DW 70 g & UW 50 g), F = 10 g At BW (40g) & F (10g): Move moderately with 20g of additional torque

At BW(60g) & F (10g): Move slowly as if Down Weight measurement

Example of heavy touch (2)

2, Moderate BW , Big Friction , Normal Mol BW = 40 g (DW 70 g & UW 10 g, F = 30 g

At BW (40g) & F (10g): Move moderately with 20g of additional torque

At BW(40g) & F (30g): Move slowly as if Down Weight measurement

Example of heavy touch (3)

3, Moderate BW, Normal Friction, Big Mol BW = 40 g (DW 50 g & UW 30 g), F = 10 g

You may observe fat & wide hammers and lots of key leads in this case

Seesaw model by David Stanwood

 $\mathbf{BW} = (\mathbf{DW} + \mathbf{UW}) / 2$

Static touchweight: Balance Weight

Causes of Friction

Flange centers
Key bushing (balance & front)
Key balance hole
Capstan - heel connection
knuckle - jack connection

Kinetic Touch Weight

Same BW doesn't mean they feel same "touch weight"

Calculating Mol of key model

Examples: A0 of a Steinway D: 72,000 gcm², C4 of a Yamaha C3: 31,000 gcm², C4 of a Kawai K3: 6,000 gcm²

Mol of a hammer

 $Mol(H) = SW \times L (SW)^{2}$

Smaller Mol

Lighter hammer head

Pivot point

Bigger Mol

Heavier hammer head

Mol of a wippen

Mol(w) = Σ {Mass of each part × L(each)²}

Moment of Inertia

Kinetic resistance of a rotating object

Linked Moment of Inertia

Amount of the Moment of Inertia transferred through linked parts

Gear Ratios

Output/input ratio of linked rotating parts

How to feel the Mol of hammer at key

Mol (H at Key) = Mol (H) $\times (L_{WO} / L_{HI} \times L_{KO} / L_{WI})^2$

Linked Moment of Inertia

Smaller Gear Ratio = Lighter to give acceleration

Bigger Gear Ratio = Heavier to give acceleration

Difference in L(KO)

Sample calculation:

- Same hammer, wippen and Mol (key)
- Use each data of L(ко)

S&S model M Bottom B (Lко = 12.1 cm) > Mol (whole) : 202,000 g cm^2

S&S model D Bottom B (Lко = 16.5 cm) Mol (whole) : 316,000 g cm^2

S&S M: Lкi = 23.2 cm, Lкo = 12.1 cm, Mol = 202,000

S&S D: LKI = 31 cm, LKO = 16.5 cm, Mol = 316,000

Smaller Mol = Easier to give acceleration = Top speed is low

Kids: enjoy to ride Professional: too light to ride, top speed is far slow

Relation between playing force and Mol

Play at lighter action with smaller Mol

The pianist who has narrow band of playing force:

Feels controllable and expressive

The pianist who has wider band of playing force:

Feels limited volume and expression

Bigger Mol = Heavier to give acceleration = Top speed is very fast

Kids: nearly impossible to ride as too heavy Professional: manage-able, fastest top speed

Relation between playing force and Mol

Play at heavier action with bigger Mol

The pianist who has narrow band of playing force:

Feels too heavy

The pianist who has wider band of playing force:

Feels controllable and expressive

Strike Weight Ratios Location of key leads

Decide Strike Weight level

Lighter hammer has better tremolo ability
 Heavier hammer has deeper and bigger tone

Find desired SW with

- Preferred Strike Ratio
- Desired touchweight
- Tonal quality

Set Ratios

Action Ratio for standard regulation

Strike Ratio for reasonable static touchweight

Gear ratios are related with AR & SR

Adjusted by

- Capstan position,
- Cut balance punching cloth,
- Shim wippen heel

etc.

Location of key leads

Locate key leads according to the amount of Mol

Get bigger Mol - Locate leads outer side

Get smaller Mol - Locate leads closer to balance pin

Stanwood Adjustable Leverage Action

Adjustable wippen heel

